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Work on this project was distributed to various tasks. The first was design construction 

and calibration of a simple, one-degree-of-freedom model. The second was the development 

of fuzzy-logic software needed to control the motion. The third was appropriate balance 

systems and dynamic calibration techniques. 

1.  One-and two-degree of freedom simulators 

A roll moment balance system was designed and constructed. The system was mounted 

to a stepper motor via a shaft which played the role of a roll actuator. The electronic 

components and software necessary to provide direct feedback were constructed and tested. 

At the end of the balance, a bar was mounted and connected with springs to demonstrate 

the simulation of harmonic motions. The system then was operated as follows. The bar was 

displaced from its equilibrium position and then was released. The couple exerted by the 

springs was detected by the balance system and was fed to the computer. The computer 

then integrated the differential equation of the motion by a small time step, for a prescribed 

artificial moment of inertia and determined the corresponding angular rotation A(f>. It then 

activated the roll actuator to perform a rotation A</>. The process was repeated and thus 

harmonic motions were executed. 
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The package was debugged and a delta wing model has been mounted on the sting. The 

plan is to employ this mechanism in order to simulate wing rock in the wind tunnel. The 

advantage of this approach is that then the moment of inertia of the model will be entered as 

a parameter of the software. Combined motions were tested subsequently. To this end the 

software was prepared which allows the operation of the three-degrees-of-freedom dynamic 

strut described in the proposal. This simulation is described in Appendix I. This was the 

senior project of Mr. Tomlin, one of the undergraduate students who worked on this project. 

A second generation roll moment balance system was then designed and constructed. 

The system was mounted to a stepper motor via a shaft which played the role of a roll 

actuator. The electronic components and software necessary to provide direct feedback were 

constructed and tested. A schematic of the drive hardware can be seen in Fig. 1. The 

system bulk has been reduced from this initial design by the use of smaller bearing houses, 

fewer bearings, and a smaller motor. 

A second generation load cell has also been constructed using a very thin (0.005") alu- 

minum tube. The new load cell greatly exceeds the sensitivity of earlier designs but still 

maintains sufficient structural strength to withstand the dynamic loads which it must trans- 

mit from the model to the sting. Sensitivity was further increased by the mounting of two 

parallel, high resistence strain gauge bridges on the cell. 

Because of the small forces being measured in this experiment, amplification is necessary 

to achieve a useful output from the system. Still, the system has been plagued by electro- 

magnetic noise which adversely affects the closed loop control of the model by introducing 

no-load instability. A great deal of effort has gone into the solution of this problem and noise 

has been reduced to an acceptable level. 

A method to accurately calibrate the load cell was also developed. The calibration scheme 

incorporates a fuzzy logic system so that the calibration can be adapted to any changes in 

system response due to changes in mechanical or environmental states. Unfortunately, this 
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phase of the work has not yet been completed. 

Development of a pneumatically driven "mini-DyPPiR" is underway. This system will 

allow for three-degree-of-freedom dynamic control of the model and would again employ an 

adaptive fuzzy logic control system. If successful, the mini-DyPPiR would be superior ot 

the current stepper-motor driven rotational system, because it would offer smooth rotation 

at low speeds. Because of the nature of stepper-motors, the high sensitiity load cell picks up 

vibrations from the motor at low stepping rates. 

2.  Fuzzy Logic Controller 

It is anticipated that complex feedback loops will be necessary to control model motions 

in the wind tunnel. It is believed that the prediction of such motions and their controls can 

be achieved more efficiently with fuzzy logic techniques. 

A computer program was written and tested. As input to the program we employed the 

reading of pressure transducers connected with a seven-hole probe. The desired output was 

the actual orientation of the probe as well as the static and dynamic pressure. The program 

was employed to generate static pressure, dynamic pressure and three-components of the 

velocity in terms of the signals obtained by the pressure transducers. 

As a first step, the code was employed for system identification in high-alpha delta-wing 

unsteady aerodynamics. A delta wing, equipped with cavity flaps or an apex flap, was 

tested executing pitch-up maneuvers while the flaps are dynamically employed, aiming to 

modify and control the behavior of the two leading-edge vortical structures and thus their 

effect on the pressure distribution and aerodynamic loading of the wing. The fuzzy identifier 

was constructed to predict the temporal evolution of the leeward pressure distribution and 

the aerodynamic loads for given time histories of pitching, a(t),ä(t), and flap deployment 

4>(t), 4>{t). Work on this topic is described in greater detail in Appendix II. 

The fuzzy logic system used in this experiment is based on an optimized system as 

outlined by Wang1 for identifying non-linear systems in control applications. The program 
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which was used has been under development with the goal of eventually controlling systems 

whose aerodynamic/hydrodynamic effects are too complex to model for classical control 

purposes. In its early stages of development, the program has been used successfully to 

fit complex curves based on partial data sets. It accepts as input the following data: A 

cluster radius for determining the complexity of the fuzzy rule base, a Gaussian membership 

function shape variable which determines the effect of a fuzzy rule on its surroundings, and 

the training input-output pairs. 

The cluster radius determines the minimum amount that one point in the training data 

must differ from all other points in order to be part of a new fuzzy rule. The advantage of 

this clustering method is that for any given system and cluster radius, there is a limit to the 

number of fuzzy rules which can be created. Thus the cluster radius directly determines the 

complexity of the fuzzy rule base for any given system. Here, the cluster radius was chosen 

so that each input-output pair created a new rule, thereby ensuring that the program would 

return accurate values at the original data points. 

The Gaussian membership function shape variable has by far the most significant effect 

on the smoothing effect of the predictor program and therefore the most care must be taken 

in its specification1'2. If the shape variable is too small, then all predicted values will take 

on the magnitude of the nearest fuzzy rule, resulting in large regions of like points. If, 

on the other hand, the shape variable is chosen too large, then a fuzzy rule will affect a 

large area of surrounding values, possibly including other rule supports or center values. 

This will result in very smooth but inaccurate results. It is, therefore, imperative that a 

reasonable compromise be determined between these conditions. For the purposes of this 

experiment, this compromise was found through trial and error, although it seems likely 

that with a thorough knowledge of the input-output ranges and the cluster radius, a more 

rigorous method of determining this value should be possible. 

To further test this software it was decided to employ a dynamic mechanism which is 
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available and operational. This involved the response of a ship hull to oncoming waves. The 

fuzzy logic system was trained with data obtained with different wave characteristics and 

ship incidences. The idea was to train the artificial intelligence system to predict the response 

of the vessel, namely pitch and roll characteristics to new conditions. More specifically, the 

ship "learns" to recognize the condition of the sea it finds itself in. It then predicts how it 

will response, if it points in a different direction. 

The data taken for this experiment consisted of 13 angles of incidence ranging from -30° 

to 30° in 5° increments. The incident waves were generated at three different magnitudes at 

0.25 Hz and 0.5 Hz for a total of 78 different data sets. Each data set in turn contained time 

records of two water level transducers separated by 21", the roll angle of the ship and the 

pitch angle of the ship. Each time record was 10 seconds long and was sampled at 100 Hz. 

Unfortunately, it was determined after the data had been taken that the largest magnitude 

wave at 0.5 Hz was affected by some sort of mechanical interference and thus had to be 

removed from the training set. 

To test the code, a case for intermediate values of the parameters was predicted. At these 

values of the parameters data were also obtained which were not employed in the training of 

the fuzzy-logic system. In this way it was possible to compare directly the predicted behavior 

against experimental data. 

Typical results are presented in Figs. 2 and 3 for roll and pitch respectively, for an 

incidence of 15° at a wave frequency of 0.5 Hz. The phase and frequency of the response of 

the model are predicted reasonably well. However, the waveform contains higher harmonics 

which are not present in the actual data. 

This work was presented at an ASME meeting and is described in greater detail in 

Appendix III. The method was subsequently applied to predict pressure distributions over a 

delta wing controlled by deployable surfaces. This was presented at an AIAA conference. The 

paper is attached as Appendix IV. The latest development on this project will be presented 
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at the AIAA annual meeting in January 1998.   A first draft of this paper is attached as 

Appendix V. 
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4. Student Performance 

Two undergraduate students have worked on this project. Mr. Tim Tomlin developed 

and tested the first simulator. He was later accepted in the graduate school but decided 

to work on another project. Mr. Christopher Moore, a graduate student, has carried out 

most of the work on this project. His efforts were somewhat hampered by the fact that the 

mother project, namely the main project which this AASERT was supposed to complement 

was not renewed. Mr. Moore earned a Masters degree and continued for a while his efforts 

but then unfortunately for the progress on this effort and perhaps fortunately, for him, he 

decided to get married and accepted a lucrative offer from industry. Due to lack of funds, 

it was not possible to use the Dynamic Strut in the VPI Stability Tunnel which this group 

has helped design and construct. It was thus decided to develop an alternative simulator. 

This was the project of another student, Mr. Joon Pak, who is an undergraduate student. 

Mr. Pak has transferred from electrcial engineering and continues working with this team. 

Finally, Mr. Schaeffler, a Ph.D. student, has contributed to this project. Mr. Schaeffler will 

defend his Ph.D. dissertation in December 1997. 

5. Publications 

The following publications have resulted from this project and are attached as Appen- 

dices to this final report. 
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Fig- 2.   Predicted and actual roll of the model at a wave incidence of 15° and a frequency of 
0.5 Hz. 

Fig. 3.   Predicted and actual pitch of the model at an incidence of 15° and a frequency of 
0.5 Hz. 
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Appendix II 

Fuuy Logic tc Neural Network System 
Identification for High Alpha Delta Wing Maneuvers 

with Deployable Control Surfaces 

Deborah A. Furey** and 0. K. Rediniotist 
Department of Aerospace Engineering 

Texas A&M University 
College Station, TX 

and 

Christopher T. Moore*, Norman W. SchaefBer*, and Demetri P. Telionisft 
Virginia Polytechnic Institute and State University 

Blacksburg, VA 

Abstract 

Fuzzy logic and neural network system-identi- 
fication and control techniques are employed in high- 
alpha delta-wing unsteady aerodynamics. A delta 
wing, equipped with cavity flaps or an apex flap, is 
executing pitch-up maneuvers while the flaps are dy- 
namically employed, aiming to modify and control the 
behavior of the two leading-edge vortical structures 
and thus their effect on the pressure distribution and 
aerodynamic loading of the wing. First a fussy iden- 
tifier is constructed to predict the temporal evolution 
of the leeward pressure distribution and the aerody- 
namic loads for given time histories of pitching, a(t), 
6t(t) and flap deployment 4(t), i(t). 

Introduction 

The aerodynamics of supermaneuver-perfonning 
aircraft has been a great challenge to aerodynamicists 
but still many questions in this area are unanswered. 
This is partly due to shortage of wind-tunnel hard- 
ware able to simulate complex maneuvers of sensor- 
instrumented models and allow the measurement of 
the properties of the model flowfield interaction. More- 
over, when the control of these interactions is desired, 
the task becomes understandably overwhelming: dif- 
ferent flow-control devices have to be tested, each one 
at several different dynamic deployment schedules and 
rates, as well as testing of combinations of flow-control 
devices. While a sufficiently large data bank of these 
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test data has been generated, then the daunting ques- 
tion emerges: How is all this information efficiently 
implemented into the next generation super-agile air- 
craft? Since the rapid rates of motion during a su- 
permaneuver are beyond the pilot's response limits, 
an active controller between the pilot and the aircraft 
is necessary. To reinforce the gravity of the problem, 
along comes the inadequacy of the conventional adap- 
tive control schemes: the high rates and large motion 
amplitudes involved in a supermaneuver preclude the 
local linearization of the strongly nonlinear governing 
equations. 

Schreck et al1 demonstrated application in un- 
steady aerodynamics of system-identification and 
modern control methods based on the use of artificial 
neural networks (ANN). There1-*, ANNs were shown 
to successfully model vortex dynamics principles. Fur- 
ther attempts were also reported later3'4. Fussy logic 
systems (FLS) appear to be equally capable system 
identifiers. Comparisons of the two techniques4-', i.e., 
ANN versus FLS in different applications seem to favor 
the latter. However, we believe that neural networks 
and fussy logic have complementary strengths and a 
symbiotic relationship between the two holds the se- 
cret to effective system identification and control. 

In this paper we first demonstrate that FLS and 
ANN can successfully identify non-linear aerodynamic 
systems. Our system consists of a pitching delta wing 
with dynamically deployed flaps during the maneuver. 
We identify the effect this system has on the tempo- 
ral evolution of the leeward-side pressure distribution 
as well as the aerodynamic loads. Once a system 
model has been generated a fussy controller will be 
constructed with the objective to control the cavity- 
flap deployment schedule during pitch-up, so that a 
certain optimization criterion is satisfied, for example, 
the maximising of the ratio L/D (lift over drag) for all 
times during the maneuver. 
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Facilities and Instrumentation 

The present research was conducted in the VPI 
k SU Stability Wind Tunnel and the ESM Wind 
Tunnel. The first has a 6' x 6' test section and an 
excellent quality of flow. This tunnel has been recently 
equipped with a dynamic strut which was given the 
acronym DyPPiR for "Dynamic-Plunge-Pitch-RoH" 
mechanism. The design, construction and calibration 
of this facility involved many faculty at VPI&SU, 
under the direction of Dr. Roger Simpson and five 
years of intensive work. A discussion of the main 
elements of the design can be found in Ref. 6 and 
the accompanying instrumentation in Ref. 7. 

The DyPPiR can provide simultaneous plunging, 
pitching and rolling of models on the order of 100 lb 
in weight, at a frequency of up to 10 Hi, depending 
on the amplitude of the motion. These motions can 
be independently controlled by software. Any combi- 
nation of arbitrary motions is possible. In this case, 
pitch up motions are executed. Such motions have 
been tested earlier in two much smaller facilities*'9, a 
wind tunnel and a water tunnel and at Reynold num- 
bers of the order of 104. Simultaneous plunging of the 
DyPPiR carriage and pitching of the pitch actuator 
induces pitching of the model about its quarter-chord 
axis. The aim here is to control the leading edge vor- 
tices and delay breakdown, while pitching up to high 
angles of attack. This is pursued by deploying cavity 
flaps. 

In the present experiments we employ a 2* x 3* 
delta wing model (Fig. I) which has been tested 
extensively in this facility in steady flow7. The model 
is hollow to provide space for instrumentation. The 
top surface of the model is equipped with three rows 
of pressure taps. Pressure transducers are positioned 
beneath the instrumented surface to provide unsteady 
pressures with a high frequency response. Fifteen 
pressure ports were aligned with a normal to the 
leading edge, at a distance of x/e = 0.61 from the 
apex. A 32-transducer Electronic Pressure Scanner 
(ESP) from PSI, Inc. with a pressure full scale of ± 20 
in HjO was employed. The ESM Pressure Scanner was 
interfaced with a laboratory computer and was on-line 
calibrated through instrumentation by AEROPROBE 
Corp. The system consists of an ESP interface/data- 
acquisition board PDA-3101 (31 KHi max sampling 
rate) and an ACCUPRES computer-controlled, on- 
line pressure calibrator. Figures 2(a) and 2(b) present 
the coordinate system used and the pressure port 
distribution, respectively. 

Funv Lone Systems fFLftt 

A recently developed field in mathematics, the 
theory of fuszy sets and the logic stemming from it 
has been gaining ground as a system identifier, some- 
times at the expense of ANN popularity. In fact, in the 
semiconductor industry, microcontroller pundits pre- 
dict that semiconductor-based fussy technology will 
be as prevalent in products by the end of the decade 
as microprocessor technology is today. Although tra- 
ditionally, fuzsy logic has been viewed as a technique 
for representing imprecise, ambiguous and vague infor- 
mation, nothing prevents it from successfully dealing 
with concrete, quantitative and precise data. In fact, 
the Universal Approximation Theorem stated below 
proves that fussy logic systems are capable of uni- 
formly approximating any nonlinear function to any 
degree of accuracy. 

Figure 3 presents a schematic of the basic con- 
figuration of the fussy logic systems proposed in this 
work. The fussy rule base consists of a collection of 
fussy if-then rules in the following form: 

JjW : If xt is Ff and ...and »„ is J^.THEN y is G*v 

where Ff and G* are fussy sets, 

X =(xi,...,i„)T,y are the input and output lin- 
guistics variables, respectively, and £ = l,...,Ai* 
with M being the numbers of rules. 

However, in engineering systems, inputs and out- 
puts are real-valued variables in crisp sets and not lin- 
guistic variables in fuzzy sets. The conversion from the 
former to the latter and vice-versa is achieved through 
the fuszifier and defuzzifier respectively. The fuszy in- 
ference engine is the heart of the system and maps the 
fussy inputs to the fussy outputs, properly employ- 
ing the rules from the fussy rule base. In one of our 
approaches we use center average defuzzifier, product- 
inference rule, singleton fuszifier and Gaussian mem- 
bership function. Then the fussy system reduces to: 

/(!) = f ,V   _lx»\1        (1) 

ä[*»««P(-(3*))] 
where x = (xi...,xn)T eU (U is the universe of dis- 
course) is the input vector, n is the number of an- 
tecedents (inputs) and M is the number of rules. 
+$ii?i><zf »** the parameters of the Gaussian mem- 
bership functions and y* are the centers of the out- 
put fussy sets. Although our techniques are capable 
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of identifying multi-input, multi-output systems, here 
to facilitate the reader's understanding, a multi-input, 
single-output system is presented. We state here the 
following University Approximation Theorem4: 

For any given real and continuous function ;ona 
compact set ut Ä" and arbitrary e > 0 there exists 
a fuzzy logic system / in the form of (A) such that 

avpgdj /(*)-*(*) <€. 

Generating rules and membership functions for fuzzy 
logic is essentially a learning process. Here is where 
the utilization of neural network techniques enters 
our modeling process. Using supervised learning, a 
neural network can generate or sort out rules and tune 
the membership function parameters. For instance, 
for the single-output system (A) training is achieved 
using a back-propagation algorithm to determine the 
parameters xf, o\, if (without loss of generality the 
af 's are set equal to 1). 

Fuzzy Logic Training Algorithm 

Wang [4] shows that the fuzzy logic system given 
by Eqn. (1) is an optimal fuzzy logic system in the 
sense that the Gaussian shape variable, v, can be 
chosen such that the output of the fuzzy logic sys- 
tem matches any given N input-output pairs to any 
given accuracy. A nearest neighborhood clustering al- 
gorithm is used to train the system starting with the 
first input-output pair. A cluster center is established 
and a cluster radius is chosen. If the distance between 
any subsequent input-output pair and the current clus- 
ter is greater than the cluster radius, then a new clus- 
ter center, or fuzzy rule, is established. This continues 
until all training I-O pairs are used. The fuzzy logic 
system thus has two independent variables, the cluster 
radius and the Gaussian shape variable, which must be 
chosen before the system can be trained. These vari- 
ables greatly affect the complexity and accuracy of the 
fuzzy logic system and will vary based upon the needs 
of the user. 

The cluster radius determines the minimum 
amount that one point in the training data must dif- 
fer from all other points in order to be part of a new 
fuzzy rule. The advantage of this clustering method is 
that for any given system and cluster radius there is 
a limit to the number of fuzzy rules which can be cre- 
ated. Thus the cluster radius directly determines the 

complexity of the fussy rule base for any given sys- 
tem. In this study, the amount of training data was 
minimal: For this reason, the cluster radius was usu- 
ally chosen small enough such that every input-output 
pair created a new fuzzy rule. 

The Gaussian membership function shape vari- 
able is a smoothing variable. If the Gaussian shape 
variable is large, then it has a smoothing effect and 
the result will be a very generalized fuzzy logic sys- 
tem. This may be useful in systems where data are 
noisy but could have an adverse effect on complex sys- 
tems. If the Gaussian shape variable is small, then 
predicted outputs will have nearly the same magni- 
tude as the closest training cluster center, particularly 
when the training data is sparse. Thus a compromise 
between generalisation and accuracy must be made, 
depending on the complexity of the system, quality of 
data, and sparseness of data. It is generally not dif- 
ficult, however, to determine an appropriate value for 
the Gaussian shape variable through a few trial-and- 
error procedures. 

Neural Network Training Algorithm 

Using the pitch-up delta wing data, a neural net- 
work was trained to predict the spatial and temporal 
pressure coefficients on the surface of the wing. Data 
were provided for four pitch-up rates, 22°/s, 40°/s, 
48*/s, and 66°/s, in the form of pressure coefficients 
for 15 pressure ports. The ports were equally spaced 
from the centerline of the delta wing out to the lead- 
ing edge. Pressure profiles for several instantaneous 
angles of attack in each pitch-up schedule provide the 
input data for the neural network. 

The network was trained using backpropagation. 
A three-layer (two hidden layers) network was used for 
the present study (Fig. 4). 

The input vectors consist of port number, instan- 
taneous wing angle, a(t), and pitch rate, ö(t). The 
fact that the pressure ports are equally spaced allowed 
for use of the port number (integer from 1 to 16) as 
a network input instead of each port's actual distance 
from the leading edge. The network output is the in- 
stantaneous pressure coefficient Cp(t). The first and 
second hidden layers consisted of 8 and 4 neurons, re- 
spectively, with log-sigmoid activation functions. The 
output layer consisted of one neuron with linear ac- 
tivation function. The functional description of the 
log-sigmoid activation function is: 

GW = üW (2) 
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The linear activation function is: 

G(x) = Az + b (3) 

where x is the input value. The backpropagation 
method utilized Levenberg-Marquardt optimisation 
techniques. This approach uses an approximation of 
Newton's method for updating the weighting coeffi- 
cients. The Levenberg-Marquardt weight update rule 
is: 

AW=(JTJ+wJ)~lJT€ (4) 

where J is the Jacobian matrix of the derivatives of 
error with respect to weight and e is the error vector. 
The scalar multiplier, w, influences the update rule. 
When u is large, the update rule is approximately 
the gradient descent method and when u is small, the 
update rule approximates the Gauss-Newton method. 
The multiplier is adjusted in the back propagation 
training procedure to maintain small errors. This 
technique allows for faster convergence than a purely 
gradient descent method. 

Results 

The results in this study were produced from two 
sets of training data. The first set was obtained on 
the DyPPiR apparatus in Virginia Tech's stability 
tunnel and contains pressure coefficients at spanwise 
pressure ports across half of a pitching delta wing for 
various pitch-up rates. The ports are located at z/e 
= 0.61. Thus, when training with these data, the 
fuzzy logic system was given port number p,-, pitch- 
up rate a, and angle of attack <k, as inputs with the 
pressure coefficient as the desired output. The second 
set of data were obtained in Virginia Tech's ESM wind 
tunnel and contains pressure coefficients across the 
entire span of a pitching delta wing for various cavity 
flap deployment schedules. The cavity flap deployment 
schedules consisted of pitch-up motions from 28° to 
61° with flaps not deployed, deployed at 32°, deployed 
at 40°, and always deployed. When training the fussy 
logic system with these data, the system was given 
port number, time, angle of attack, and a deployment 
flag ( 0 if no t deployed, 10 if deployed ) as inputs with 
the pressure coefficient as the desired output. 

First the fuzzy logic system was trained using 
the DyPPiR data with all pitch-up rates and angles 
of attack except for the angles of attack of 36.02* 
and 44.04° for the pitch-up rate of 48.6 degrees per 
second. The trained system was then used to predict 
the pressure distributions at the missing angles and the 

results are shown in Figs. 5 and 6. Note that several 
different values were used for the Gaussian shape 
variable in order to show how the system responds to 
variations of this parameter. Figure 7 shows the actual 
pressure distributions over the wing at 36.02* as well as 
at the prior and following angles of attack and also the 
interpolated curve between these two. It is necessary 
to examine these curves to avoid the impression that 
the fussy logic system is simply an averaging system. 

In an attempt to increase the accuracy of the fussy 
logic predictions at the angle of attack of 44.04°, the 
system was retrained with the pressure coefficient at 
port 3 for the target angle included in the training 
data. The results from this training are shown in Fig. 
8. The system was then retrained adding one more 
point at the target angle until four additional points 
were included beyond those used in the initial training. 
These results, shown in Fig. 9, would indicate that a 
well trained system would be able to accurately predict 
the pressure distribution over an entire wing with only 
a small sample of the pressures over the wing. 

In order to allow for comparisons between the 
fussy logic and neural network identification systems^ 
the system was then trained with all of the data 
obtained from the DyPPiR apparatus. The trained 
system was then used to predict all of the spanwise 
pressure distributions for each angle of attack included 
in the 48.6*/s pitch-up rate data files. Since all of 
the predicted values were included in the training 
data, it is expected that the fussy logic predictions 
should exactly match the actual data. It can be 
seen in Fig. 10 that the predicted values do indeed 
correspond exactly with the actual data values. These 
results may not be significant from a potential controls 
standpoint but they do verify that the fuzzy logic 
training algorithm is functioning as expected. 

Next the system was retrained using every other 
point from the data files for all five pitch-up schedules. 
The fuzzy logic model was then once again used to 
predict pressure distributions, shown in Figure 11, for 
all angles of attack for the 48.6*/s pitch-up rate. In 
order to form an accurate model, it was necessary to 
use a value of 1.5 for the Gaussian shape variable in 
the training of the fuzzy logic system. The necessity 
of such a large value for this variable indicates that 
the training data set is becoming sparse and does not 
bode well for the success of a more widely distributed 
set of data. 

The system was then trained one final time using 
every third point from the data files for every pitch-up 
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schedule. Once again the fussy logic model was used 
to predict the pressure distributions for the 48.6°/s 
pitch-up rate. In order to even closely approximate the 
original data, it was necessary to use a value of 2.0 for 
the Gaussian shape variable. Although the predicted 
data does follow the original data fairly well, as seen 
in Fig. 12, the model does demonstrate ripple and 
undershoot. This is a characteristic of a model which 
is too generalised as a result of using a large Gaussian 
shape variable to counteract a sparse training data set. 

In an effort to test the effectiveness of the fussy 
logic system when used in conjunction with control 
surfaces, the system was trained with three of the 
four available cavity flap deployment schedules. The 
system received as input the data from the always 
deployed and never deployed schedules in addition to 
the 32° deployment schedule. The resulting fuszy logic 
model was then used to predict pressure distributions 
at ail times for the 40° deployment schedule. Figure 13 
shows a spectral plot of the absolute error between the 
actual and predicted values for all spatial and temporal 
locations. It can be seen that the error ■ relatively 
small for all times with a maximum error occurring at 
approximately 0.4 seconds. Figure 14 shows the actual 
and predicted pressure distributions for this m»Tinmim 
error case. Figure 15 through 18 show the actual 
and predicted pressure distributions at quarter second 
intervals and Fig. 19 shows the pressure distribution 
immediately following the deployment of the cavity 
flaps. All of these predictions are good approximations 
of the actual data considering the limited amount of 
available training data. 

Finally, it was desired to test the fussy logic 
system with an extremely limited amount of training 
data. To achieve this purpose the system was first 
trained with the full data sets from the fully deployed 
and never deployed cavity flap schedules in addition 
to all the data from ports 3 and 7 from the 32* and 
40° deployment schedules. The resulting model was 
then used to predict the pressure distributions for the 
32° and 40* deployment schedules for all spatial and 
temporal locations. The error spectrum resulting from 
these two sets of predicted data are presented in Figs. 
20 and 21. The process was then repeated with the 
addition of data from port 2 from the 32* and 40* 
deployment schedules and then again including port 6. 
The error spectrum plots for the three point training 
are shown in Figs. 22 and 23 and those from the 
four point training in Fig. 24 and 25. Although the 
magnitude of the maximum error does not decrease as 
the number of training points increases, it is observed 

from the error spectra that the overall error of the 
model does decrease as the complexity of the training 
is increased. The maximum error and quarter second 
pressure distributions for the four point predictions 
of both the 30* and 40* deployment schedules can 
be seen in Figs. 26 through 35. Although these 
results stray somewhat from the original data, they 
are still encouraging in light of the limited number of 
deployment schedules available for training the system. 

The neural network was first trained also with 
the entire available database. The intention here was 
to show whether or not an accurate model for the 
aerodynamic system could be found in the first place, 
that could match the existing data. This process led 
us in heuristically identifying a network architecture 
(layer and neuron arrangements, activation functions, 
etc.) that performed optimally. The trained network 
was then used to predict the pressures at intermediate 
ports (port numbers 2.5, 3.5, etc.) to ensure that 
the model was not ill-behaved between the training 
data, although experimental data was not available 
at such ports. The results are presented in Fig. 36. 
For all angles of attack and port locations, there is 
excellent agreement between the predicted pressure, 
coefficient from the trained network and the actual 
data. The above graphs show that the predicted 
values for these conditions are consistently within an 
acceptable accuracy. 

Figure 37 presents predictions with training per- 
formed on the network using every other point from 
the data files for each pitchup schedule. The above 
graphs show the results for the pitchup rate of 48*/sec. 
There is good agreement for all angles of attack and 
port locations between the predicted output pressures 
and the actual data with some regions where the model 
accuracy is compromised. For this training condition, 
the network is trained with fewer data points but over- 
all, still predicts output values within acceptable ac- 
curacy over the entire spatial (port number) and tem- 
poral (angle of attack) ranges. 

Results of training performed on the network 
using every third point from the data files for each 
pitchup schedule are presented in Fig. 38. The graphs 
show the results for the pitchup rate of 48* /sec. It 
should be noted that the overall model prediction 
capability is still very good. 

Figure 39 shows the results from training the 
network with 50 randomly selected points from the 
data for the pitchup rate of 48*/sec. Agreement is very 
good for most angles of attack and pressure ports. 
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Finally, training was carried out using half of all 
the data for all the pitch-up rate«. Figure 40 shows 
predicted vs. actual data for pitch rate of 22 deg/sec 
and Fig. 41 for pitch rate of 40 deg/sec. 

Conclusions 

A fuzzy logic and neural network system were 
trained with pressure data obtained experimentally 
over a maneuvering delta wing. This was essentially a 
feasibility study to demonstrate the sensitivity of each 
technique to the number of available data for training. 

It is indicated that highly non-linear phenomena 
can be quite accurately predicted. The power of 
such methods is that once a system is trained, then 
a minimum number of input sensors is necessary to 
generate a new prediction. The practical importance 
of such a scheme is that a system can be trained 
by Sight data. Four or five sensors on a prototype 
aircraft will be enough to generate accurate prediction 
which could be used to activate computerized control 
of the aircraft attitude. This idea, was tested by 
provided information at only four pressure portions 
and requiring the system to predict the overall pressure 
distribution. 

A great advantage of such systems is that training 
can be carried out on board and, in fact, continuously 
improved as more data becomes available. This is 
presently being simulated. 
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Fig. 39: Neural network predictions of pressure distributions for pitchup rate of 
48 6*/s. Network was trained using every third point from full data set 
including data from all pitchup rates 

15 



Copyright ©1996, American Institute of Aeronautics and Astronautics, Ine, 

Tnmmthtn*mtm»tn.n 
tail» iil«n<mrf>tf » 

I   i   i   i   i   I   i   i   i   i   I    I   ■   ■   '   i   I   i   i   i   '   I    I   '   '   ■   '   I   '   '   '   '   I    I   I   I   I   I   I   I   I   I   I 

0 f 16 0 I I« 0 t 1« 0 8 16 

Poet Number PortNumber PortNumber PortNumbef 

Or- 

Cp 

^r. ■ i i i i . ■ i i   1 i i i t I i i i i I      I i i i i I i i i i I 
0 8 16 0 8 16     0 8 16 

PortNumber Port Numb* Port Numb» 

Fig 39: Neural network predictions of pressure distributions for pitchup rate of 
48 6°/s. Network was trained using half of the data randomly chosen 
from the full data set. 
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Appendix III 

FUZZY LOGIC IDENTIFICATION OF SHIP MOTIONS 

IN RESPONSE TO VARYING WAVE INCIDENCE 

Christopher T. Moore and Demetri P. Telionis 
Department of Engineering Science and Mechanics 
Virginia Polytechnic Institute and State University 

Blacksburg, VA 24061-0219 

Abstract 

A fuzzy logic identification code was prepared. 
The program was trained with experimental data of 
pitch and roll of a ship model at various incidences 
to oncoming waves. The program can then predict 
the response of the model to any wave and at any 
incidence. 

1.   Introduction 

The skipper of a small sailing boat receives a 
variety of signals through his feeling of the heeling 
and pitching of his vessel, his feeling of accelerations 
in heeling, pitching and yawing, the feeling of sheet 
and tiller resistance, the observation of sail shape and 
tell tail direction and the shape ami direction of the 
waves. In response to all these inputs and with very 
little brain action, he sustains a very delicate balance 
of various forces exerted on his vessel, maintains its 
stability and maximizes its performance. 

It would be desirable for any naval vessel to 
be equipped with a central processing unit, say the 
"brain" of the vessel, that would receive signals from 
a variety of sensors and respond accordingly with 
controls that would produce the desired motion. Mere 
specifically, such a unit should be able to recognize 
quickly the characteristics of the sea surface, like 
direction, wavelength, etc. of all oncoming waves, 
wind direction and strength, predict the response of 
the vessel for the immediate future and activate the 
necessary controls to achieve a desired motion. With 

the speed and capacity of today's computers and the 
development of the theory of fuzzy logic systems 

and artificial neural networks this is today well within 
reach. 

Fuzzy logic and neural nets have been employed 
successfully so far as identifiers of dynamic flow phe- 
nomena. Schreck et al1 demonstrated application in 
unsteady aerodynamics of system-identification and 
modern control methods based on the use of artificial 
neural networks (ANN). ANNs were shown to success- 
fully model vortex dynamics principles1,2. Further at- 
tempts were also reported later3,4. Fuzzy logic systems 
(FLS) appear to be equally capable system identifiers. 
Comparisons of the two techniques4,5, i.e., ANN versus 
FLS in different applications seem to favor the latter. 
However, we believe that neural networks and fuzzy 
logic have complementary strengths and a symbiotic 
relationship between the two holds the secret to effec- 
tive system identification and control. 

In this paper we report on the training of a 
fuzzy logic program in terms of data obtained in a 
towing tank. A ship model is allowed to respond to 
waves at various incidences. Its response to pitch and 
roll is recorded as well as the characteristics of the 
incident waves and the incidence angle. The model's 
response for arbitrary values of the parameters are 
then predicted. 

2.   Fuzzy-Logic Identifier & Controller 

In a simplistic way, a fuzzy-logic system can be 
thought of as a black box that can be trained to pro- 
vide certain outputs, if fed with certain inputs. This 
task of course can also be executed by any spline algo- 
rithm, or interpolating routine.  However, fuzzy-logic 
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Systems (FLS) can carry out such tasks faster, requir- 
ing mucli less computer space. Another great advan- 
tage of FLS is that they can be continuously upgraded 
simply by adding more data to an existing system 
or even adding new controlling variables. In simple 
terms, such systems "learn by experience." Moreover, 
they can admit as input, either crisp numerical data 
or fuzzy linguistic commands. 

The fuzzy logic system used in this experiment is 
based on an optimized system as outlined by Wang4 

for identifying non-linear systems in control applica- 
tions. The program which was used has been under 
development with the goal of eventually controlling 
systems whose aerodynamic/hydrodynamic effects are 
too complex to model for classical control purposes. In 
its early stages of development, the program has been 
used successfully to fit complex curves based on partial 
data sets It accepts as input the following data: A clus- 
ter radius for determining the complexity of the fuzzy 
rule base, a Gaussian membership function shape vari- 
able which determines the efTect of a fuzzy rule on its 
surroundings, and the training input-output pairs. 

The cluster radius determines the minimum 
amount that one point in the training data must dif- 
fer from all other points in order to be part of a new 
fuzzy rule. The advantage of this clustering method is 
that for any given system and cluster radius there is 
a limit to the number of fuzzy rules which can be cre- 
ated. Thus the cluster radius directly determines the 
complexity of the fuzzy rule ba.se for any given sys- 
tem. Here, the cluster radius was chosen so that each 
input-output pair created a new rule, thereby ensuring 
that the program would return accurate values at the 
original data points. 

The Gaussian membership function shape vari- 
able has by far the most significant efTect on the 
smoothing effect of the predictor program and there- 
fore the most care must, be taken in its specification. 
If the shape variable is too small, then all predicted 
values will take on the magnitude of the nearest fuzzy 
rule, resulting in large regions of like points. If, on 
the other hand, the shape variable is chosen too large, 
then a fuzzy rule will effect a large area of surrounding 
values, possibly including other rule supports or center 
values. This will result in very smooth but inaccurate 
results. It is, therefore, imperative that a reasonable 
compromise be determined between these conditions. 
For the purposes of this experiment, this compromise 
was found through trial and error, although it seems 

likely that with a thorough knowledge of the input- ' 
output ranges and the cluster radius, a more rigorous ) 
method of determining this value should be possible. 1 

3.     Facilities. Instrumentation and Procedure \ 

The Virginia Tech towing tank has a 4x6 ft cross i 
section and is about 100 ft long. This tank is equipped I 
with a wave making machine.   Waves with different j 
amplitudes and wavelengths were generated.   Their j 
characteristics  were  monitored  by  two free surface j 
elevation sensors. A ship model was placed in the tank { 
at various incidences to the oncoming waves as shown J 
in Fig.   1.   The model was mounted on the carriage | 
by a mechanism that permits heave, pitch and roll but j 
restrains and controls the angle of incidence.   Linear I 
transducers provide signals proportional to pitch and 
roll. 

Fig. 1 Schematic of model mounted on a heave post 
that will allow pitch and roll through a gimballed tow 
point. 

The fuzzy logic system was trained with data ob- 
tained with different wave characteristics and ship inci- 
dences. The idea was to train the artificial intelligence 
system to predict the response of the vessel, namely 
pitch and roll characteristics to new conditions. More 
specifically, the ship "learns" to recognize the condi- 
tion of the sea it finds itself in. It then predicts how 
it will response, if it points in a different direction. 

In order to test the ability of the fuzzy logic 
system to predict the dynamic response of the vessel 
to oncoming waves, it is first necessary to somehow 
quantify the waves themselves.   In this experiment, 
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time records of the oncoming waves were recorded, 
using capacitance driven water level indicators, along 
with the responses of the vessel. By taking the 
data in this manner, we are able to post-process the 
time record to reveal magnitude or frequency data as 
necessary. Since the fuzzy logic system is capable 
of recognizing non-linear relationships between the 
inputs and outputs of the system, it was decided 
to attempt to train the system using the angle of 
incidence, wave magnitude, wave frequency , and wave 
height as common inputs. In addition, when trying to 
predict the roll position of the vessel, the pitch was 
used as an additional input and vice versa. 

The data taken for this experiment consisted of 
13 angles of incidence ranging from -30° to 30° in 
5° increments. The incident waves were generated 
at three different magnitudes at 0.25 Hz and 0.5 Hz 
for a total of 78 different data sets. Each data set 
in turn contained time records of two water level 
transducers separated by 21", the roll angle of the 
ship, and the pitch angle of the ship. Each time 
record was 10 seconds long and was sampled at 100 Hz. 
Unfortunately, it was determined after the data had 
been taken that the largest magnitude wave at 0,5 Hz 
was afTected by some sort of mechanical interference 
and thus had to be removed from the training set. 

4.   Results, Conclusions & Rucoiiimcutlntious 

To test the code, a case for intermediate values 
of the parameters was predicted. At these values of 
the parameters data were also obtained which were 
not employed in the training of the fuzzy-logic system. 
In this way it was possible to compare directly the 
predicted behavior against experimental data. 

Typical results are presented in Figs. 2 and 3 
for roll and pitch respectively, for an incidence of 
15° at a wave frequency of 0.5 Hz. The phase and 
frequency of the response of the model are predicted 
reasonably well. However, the waveform contains 
higher harmonics which are not present in the actual 
data. 

These results are preliminary in nature and are 
not satisfactory at present. Much better predictions 
were achieved earlier for other experimental data. 
Apparently ship motions are highly nonlinear and may 
require more input parameters in order to facilitate 
more accurate predictions. 

Fig.   2 Predicted and actual roll of the model at a 
wave incidence of 15° and a frequency of 0.5 Hz. 

Fig. 3 Predicted and actual pitch of the model at an 
incidence of 15° and a frequency of 0.5 Hz. 

Fuzzy-logic systems could also be trained to con- 
trol motions6. To this end, data must be collected on 
the response of a body to the deployment of control 
hardware. Consider again, for example, a model ves- 
sel equipped with two fins which could be activated to 
control its roll. Different amplitudes and frequency 
motions of the fins are generated and the response 
of the vessel is monitored via its sensors. These pre- 
scribed tests are repeated with the vessel placed in a 
wavy sea and again the data are employed to train the 
FLS. The system now can be used to predict the char- 
acteristics of deployment necessary to achieve a cer- 
tain motion. This is a theoretical exercise but its im- 
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plemeiitation is straightforward although a little more 
involved. 

The FI,S controller decides what level of deploy- 
ment is necessary to achieve the desired motion in the 
specific environment. For example, what angle of fin 
action is needed for the specific waves the vessel is en- 
countering. The controller then activates the control 
hardware. The FLS continuously samples its sensors 
to follow up the motion and compares its progress with 
its predicted motion. It corrects in real time for small 
perceived discrepancies and uses this new information 
to improve its "understanding" i.e., to further train 
itself. 

This effort is continued and the authors will report 
subsequent results in future publications. 
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A Fuzzy Controller for High-Alpha Delta Wing 

Maneuvers with Deployable Control Surfaces 

Othon K. Rediniotis*, Norman W. Schaeffler* and Demetri P. Telionistt 

Virginia Polytechnic Institute and State University 
Blacksburg, Virginia 

Abstract 

Fuzzy logic system-identification and control techniques are employed in high-alpha 
delta-wing unsteady aerodynamics.   A cavity-flap equipped delta wing is executingpiTh 
up maneuvers whde the cavity flaps are dynamically employed aiming to modify and control 
lb;.\a7t°

f the,two ^dmg-edge vortical structures and thusly their effect on the p es 
ure distnbuüon and aerodynamic loading of the wing. First a fuzzy identifier is constructed 
o preset the temporal evolution of the leeward pressure distributfon and the aeroTna^c 

loads for glven tune bstories of pitching, «(*), «(t) and flap deployment ft)  2)   TZ 

TI C^r^1S d?Sed WhlCh' f°r defined "<«>• *W yields "he cavitylp d payment schedule <f>(t), <f>{t) so that a desired time history of L/D is achieved. aeP'°yme*t 

Introduction 

The aerodynamics of supermaneuver-performing aircraft has been a great challenge to 

aerodynamici^but still many questions in this area are unanswered.   This is partly due 

to shortage of wind-tunnel hardware able to simulate complex supermaneuvers of sensor- 

instrumented models and allow the measurement of the properties of the model-flowfield 

interaction.   Moreover, when the control of these interactions becomes our objective, the 

task becomes understandably overwhelming: different flow-control devices have to be tested, 

each one at several different dynamic deployment schedules and rates, as well as testing 

of combinations of flow-control devices.   When a sufficiently large data bank of these test 

data is generated, then the daunting question emerges: How is all this information efficiently 

implemented into the next generation super-agile aircraft? Since the rapid rates of motion 

during a supermaneuver are beyond the pilot's response limits, an active controller between 

the pilot and the aircraft is necessary To reinforce the gravity of the problem along comes the 

inadequacy of the conventional adaptive control schemes: the high rates and large motion 
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amplitudes involved in a supermaneuver preclude the local linearization of the strongly 

nonlinear governing equations. 

The application in unsteady aerodynamics of system-identification and modern con- 

trol methods based on the use of artificial neural networks (ANN) have been recently 

investigated1-3. There1, ANNs were shown to successfully model vortex dynamics prin- 

ciples. However, further attempts to implement neural network controllers3 did not seem to 

provide sufficient accuracy. Similar occurrences in other fields4 have cost ANN popularity 

some loses. In fact, as discussed later, fuzzy logic systems (FLS) seem to be partly prof- 

iting from these ANN loses. Comparisons of the two techniques4,5, i.e., ANN versus FLS 

in different applications seem to favor the latter. However, we believe that neural networks 

and fuzzy logic have complementary strengths and a symbiotic relationship between the two 

holds the secret to effective system identification and control. 

In this paper we first demonstrate that fuzzy logic methods can successfully identify 

nonlinear aerodynamic systems. Our system consists of a pitching delta wing with dynam- 

ically deployed cavity flaps during the maneuver. We identify the effect this system has on 

the temporal evolution of the leeward-side pressure distribution as well as the aerodynamic 

loads. Once a system model has been generated, a fuzzy controller is constructed with the 

objective to control the cavity-flap deployment schedule during pitch-up, so that a certain 

optimization criterion is satisfied, for example, the maximizing of the ratio L/D (lift over 

drag) for all times during the maneuver. 

Facilities and Instrumentation 

The present research is being conducted in the VPI & SU Stability Wind Tunnel. This 

Tunnel has a 6' x 6' test section and an excellent quality of flow. The tunnel has been recently 

equipped with a dynamic strut which was given the acronym DyPPiR for "Dynamic-Plunge- 

Pitch-Roll" mechanism. The design, construction and calibration of this facility involved 

many faculty at VPI & SU, under the direction of Dr. Roger Simpson and five years of 



intensive work. A discussion of the main elements of the design can be found in Ref. 6 and 

the accompanying instrumentation in Ref. 7. 

The DyPPiR can provide simultaneous plunging, pitching and rolling of models on the 

order of 100 lb in weight, at a frequency of up to 10 Hz, depending on the amplitude of the 

motion. These motions can be independently controlled by software. Any combination of 

arbitrary motions is possible. In this case, pitch up motions are executed. Such motions have 

been tested earlier in two much smaller facilities8,9, a wind tunnel and a water tunnel and at 

Reynolds numbers of the order of 104. Simultaneous plunging of the DyPPiR carriage and 

pitching of the pitch actuator induces pitching of the model about its quarter-chord axis. 

The aim here is to control the leading edge vortices and delay breakdown, while pitching up 

to high angles of attack. This is pursued by deploying cavity flaps. 

In the present experiments we employ a 2' x 3' delta wing model (Fig. 1) which has 

been tested extensively in this facility in steady flow7. The model is hollow to provide 

space for instrumentation. The top surface of the model is equipped with three rows of 

pressure taps. Pressure transducers are positioned beneath the instrumented surface to 

provide unsteady pressures with a high frequency response. A 32-transducer Electronic 

Pressure Scanner (ESP) from PSI, Inc. with a pressure full scale of ± 20 in H2O was 

employed. The ESP Pressure Scanner was interfaced with a laboratory computer and was 

on-line calibrated through instrumentation by AEROPROBE Corp. The system consists 

of an ESP interface/data-acquisition board PDA-3101 (31 KHz max sampling rate) and an 

ACCUPRES computer-controlled, on-line pressure calibrator. Figures 2(a) and 2(b) present 

the coordinate systems used and the pressure port distribution, respectively. 

Figure 3 presents the carriage actuators, sting and delta-wing model as seen from up- 

stream. A view of the same setup from downstream is shown in Figure 4. A six-component 

dynamic balance was employed to measure the aerodynamic loads. 

Fuzzy Logic Systems   (FLS) 

A recently developed field in mathematics, the theory of fuzzy sets and the logic stem- 
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ming from it have been attracting attention, sometimes at the expense of ANN popularity. 

In fact, in the semiconductor industry, microcontroller pundits predict that seminconductor- 

based fuzzy technology will be as prevalent in products by the end of the decade as mi- 

croprocessor technology is today. Although, traditionally, fuzzy logic has been viewed as 

a technique for representing imprecise, ambiguous and vague information, nothing prevents 

it from successfully dealing with concrete, quantitative and precise data. In fact, the Uni- 

versal Approximation Theorem proves that fuzzy logic systems are capable of uniformly 

approximating any nonlinear function to any degree of accuracy. 

Figure 5 presents a schematic of the basic configuration of the fuzzy logic systems pro- 

posed in this work. The fuzzy rule base consists of a collection of fuzzy if-then rules in the 

following form: 

RW ;  If xi is Ff and ... and xn is F^ THEN  y is G\ (1) 

where Ff and G  are fuzzy sets, 

x = (x\,...,xn)  , y are the input and output linguistic variables, respectively, and I = 

1,..., M with M being the number of rules. 

However, in engineering systems inputs and outputs are real-valued variables in crisp sets 

and not linguistic variables in fuzzy sets. The conversion from the former to the latter and 

vice-versa is achieved through the fuzzifier and defuzzifier respectively. The fuzzy inference 

engine is the heart of the system and maps the fuzzy inputs to the fuzzy outputs properly 

employing the rules from the fuzzy rule base. In one of our approaches we use center average 

defuzzifier, product-inference rule, singleton fuzzifier and Gaussian membership function. 

Then the fuzzy system reduces to: 

IEUaf exp (- (2-tf) 
2^ 

M EM Xi—xi 
(2) 

IEU«? exp \- (^ 

where x = (xj ..., xn)T tU (U is the universe of discourse) is the input vector, n is the number 

of antecedents (inputs) and M is the number of rules, xf, aj, a\ are the parameters of the 
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Gaussian membership fmctions and f Me ^ ^ rf fte ^ ^ ^   ^^ 

our technique, are capable of identifying mult,input, ^^^ .^ ^ ^ ^^ 

the reader's understanding, a multi-input, sing>e-output system is presented. We state here 

the following Universal Approximation Theorem4: 

For any given real and continuous function G on a compact set Ut* and arbitrary e > 0 

there exists a fuzzy logic system F in the form of Eq. (2) such that 

SU
PXCU\F(X) - G(x)\ < e. ,„v 

Generating rules and membership functions for fuzzy .ogic is essentiafly a learning process 

Here is where the utilization of neural network techniques enters our modeling process 

Usmg supervised learning, a neural network can generate or sort out rules and tune the 

membership function parameters. For instance, for the single-output system (*) training is 

ach.eved using a back-propagation algorithm to determine the parameters A „/, s< (without 

loss of generality the af's are set equal to 1). 

Sample Results and Discussion 

System Identification 

We first exp.ore the capabilities of fuzzy logic systems to model the dynamic evo.ution 

of the pressure distribution on the leeward side of the mode..   The 75°-sweep delta wing 

was pitched from a = 28" to a = 43" with several different time histories of o« and a«) 

Durmg tins maneuver the two cavity flaps were deployed from , _ 0° to t = 30» (Figure 6) 

w,th several different deployment schedules «t) and *), and for each of these experiments 

the pressure distribution was captured at 900 time instances during the pitch-up.   Each 

expenment was repeated 20 times and the pressure data were ensemble-averaged. 

From all the collected pressure data a data bank was formed and was subsequently used 

to generate the fuzzy identifier. Our objective „as to devise an identifier like the one shown 

m F,g. 7 which, given the time histories, o«), oW, m i(t) and the pressure ^^ 
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at t = 0 would be able to predict the entire temporal evolution of the pressure distribution 

during the dynamic maneuver. 

We developed an algorithm in C++ that implements a fuzzy rule base for any ra-input, 

m-output system. The number of fuzzy regions per domain of antecedent and consequent is 

adjustable and so is the choice of membership function. In our first trials we used triangular 

membership functions. However, at latter effort, gaussian membership functions were found 

to work better. In results presented here we use the latter approach. The rules are generated 

initially from a set of inpuf-output pairs. Each rule is assigned a degree equal to the product 

of the membership values of the antecedents and consequent. A rule is stored in the rule 

base only if a similar rule with higher degree does not already exist. That minimizes the 

number of rules, and makes the defuzzifing process faster. 

Figure 9 presents the comparison between the predicted and the actual pressure distri- 

bution for the case </>(t) = const = 0, #*) = 0 (flaps not deployed) and for the a(t) shown 

in figure 8 with a(t) = 0.38 rad/sec The figure presents the pressure distribution along a 

cross-flow pressure port line (upper row in figure 2(b)), at different time instants during the 

maneuver, or equivalently, at different angles of attach. Only half of these data, arbitrarily 

chosen, were used in the fuzzy rule base generation. Nevertheless, the prediction is excellent 

for the entire data set. 

Figure 10 presents the pressure distribution (predicted and actual) along the same pres- 

sure port line in different conditions, i.e., <f>(t) = const = 30°, j>(t) = 0 (flaps deployed) for 

the a(t) shown in Fig. 8 and a(t) = 0.38 rad/sec. 

The same fuzzy identifier is also employed to predict the integrated effect of the pressure 

distribution, i.e., the aerodynamic loads L (lift), D (drag), Mc/4(quarter chord pitching 

moment). 



In the final version of the paper, comparison between the predicted and the actual Cp(t), 

L(t), D(t), Mc/4(t) will be presented for several combinations of time histories a(t), a(t), 

Fuzzy Controller 

In the second part of this work the accumulated experimental data base is used to 

construct the fuzzy controller shown in Figure 11: for defined histories of a(t) and A(t) the 

controller has to yield the cavity flap deployment schedul| <#*), ty so that a desired time 

history of the ratio £(*) is achieved^ is obvious %t thlesired | time history has to be 

within the limits of the aerodynamic-effectiveness of the cavity flaps. 

The pressure contour plots shown in Fig. 12 demonstrate the effect the cavity flaps have 

on the leeward-side pressure distribution along a cross-flow pressure port line (upper row in 

figure 2(b)). The image shows the evolution of the surface pressure as a function of angle of 

attack, or as a function of time. The fact that the pressure coefficient in the "without flaps" 

case has peaked and is beginning to decay is shown as the "island" of red in the upper left 

hand corner. In the "with flaps" case, the two yellow sections show evidence ofmerging and 

a new peak is just beginning to form as the motion ends. 

From the above it is evident that in order to achieve high suction and therefore high lift 

values, throughout the entire maneuver, a composite cavity flap actuation schedule has to 

be employed. This schedule should involve none or low flap deflection at moderate angles 

of attack and full actuation at high angles where, as shown in Fig. 12, the flaps have their 

maximum effect in improving the suction. The fuzzy controller's objective is to determine 

this optimum schedule. The final version of the paper will present such optimum actua- 

tion schedules and their effect on pressure distribution and aerodynamic loading for several 

different histories of a(t), a(t). 

Our fuzzy controller has the following major advantage: it is expandable. This means 

that as more experimental data become available it can be used to expand the controller's 

fuzzy rule base. Thus, additional cavity-flap data could be used to improve the controller's 
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accuracy while data from experiments testing different control surfaces, or devices, such as 

apex flaps or leading-edge blowing could be used to expand the controller's capabilities. 

However, the more complex the controller becomes the larger the number of fuzzy rules. 

It could easily reach the order of hundreds or thousands.   This, in turn, means that, in 

order to implement a real-time controller for a maneuvering delta wing with several different 

control devices, the speed of 32-bit processors does not suffice, even when as few as 50 

control action. More than one fuzzy coprocessor could be parallelly implemented to expand 

the system. This is why we are currently hardware implementing a dedicated fuzzy controller 

based on the VY86C570 12-bit FCA fuzzy coprocessor. Its inference speed is 10 times that 

of the conventional 32-bit processors. 
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Top    view 

Botton    View 

Fig. 1 The delta wing model. 
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Fig. 2 Coordinate systems used for the pressure data and pressure port distribution on the 
leeward side of the model; all dimensions are reduced by the chord length C. 



Fig. 3 The carriage, acutators, sting and model as seen from upstream. 



Fig. 4 The setup of figure 3 in a view from downstream. 
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Fig. 6 Delta wing - cavity flaps configurat ion. 
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Fig. 7 The fuzzy system identifier. 
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Fig. 8 Delta wing pitchup schedule. 
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Fig. 11 The fuzzy controller configuration. 
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Cp 
0+ 
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Fig' 12 f£g,E?fi&%fö&t£~<>»" P<- («PP- P-sure p„rt ra„).   „„. 


